7 research outputs found

    Effects of Phase-Locking Deficits on Speech Recognition in Older Adults With Presbycusis

    Get PDF
    Objective: People with presbycusis (PC) often report difficulties in speech recognition, especially under noisy listening conditions. Investigating the PC-related changes in central representations of envelope signals and temporal fine structure (TFS) signals of speech sounds is critical for understanding the mechanism underlying the PC-related deficit in speech recognition. Frequency-following responses (FFRs) to speech stimulation can be used to examine the subcortical encoding of both envelope and TFS speech signals. This study compared FFRs to speech signals between listeners with PC and those with clinically normal hearing (NH) under either quiet or noise-masking conditions.Methods: FFRs to a 170-ms speech syllable /da/ were recorded under either a quiet or noise-masking (with a signal-to-noise ratio (SNR) of 8 dB) condition in 14 older adults with PC and 13 age-matched adults with NH. The envelope (FFRENV) and TFS (FFRTFS) components of FFRs were analyzed separately by adding and subtracting the alternative polarity responses, respectively. Speech recognition in noise was evaluated in each participant.Results: In the quiet condition, compared with the NH group, the PC group exhibited smaller F0 and H3 amplitudes and decreased stimulus-response (S-R) correlation for FFRENV but not for FFRTFS. Both the H2 and H3 amplitudes and the S-R correlation of FFRENV significantly decreased in the noise condition compared with the quiet condition in the NH group but not in the PC group. Moreover, the degree of hearing loss was correlated with noise-induced changes in FFRTFS morphology. Furthermore, the speech-in-noise (SIN) threshold was negatively correlated with the noise-induced change in H2 (for FFRENV) and the S-R correlation for FFRENV in the quiet condition.Conclusion: Audibility affects the subcortical encoding of both envelope and TFS in PC patients. The impaired ability to adjust the balance between the envelope and TFS in the noise condition may be part of the mechanism underlying PC-related deficits in speech recognition in noise. FFRs can predict SIN perception performance

    Experimental study on extracochlear electric stimulation [Abstract]

    No full text
    English abstracts of original articleCopyright permission has been sought but has not been received, therefore this material will remain restricted.The efficiency and feasibility of chronic extracochlear implantation and electric stimulation were studied in two adult cats and four 2-month kittens. The first electrode was placed on the round window by fixing the leadwire on the bridge of aditus between the middle ear and bulla cavity; the second electrode was placed on the surface of the tympanic promontory; the third was inserted into the temporal muscle out of the bulla and the forth fixed in transverse sinus with dental cement. ABRs and EABRs were recorded pre-and postoperatively and during electric stimulation

    A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens

    No full text
    Copyright permission has been sought but has not been received, therefore this material will remain restricted.A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses' for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The aptitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/ output function. The absolute latencies and interwave latencies of waves II-III , III -IV and II -IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied

    Effect of chronic electrical stimulation on cochlear nucleus neuron size in normal hearing kittens

    No full text
    Publisher’s permission requested and denied.Very young cochlear-implant candidates may have undetected islands of residual hearing. Would the maturation of these functioning auditory neurons be affected by chronic cochlear stimulation? This was tested by examining neuron sizes in the cochlear nuclei of young, normal hearing kittens with and without chronic cochlear stimulation. Six animals received bilateral intra-or extracochlear implants and were electrically stimulated unilaterally for periods of 1,000-1,500 hours. After sacrifice, cross-sectional areas of approximately 11,000 neuron somata in the cochlear nuclei were measured with an image-analysis system. There were statistically significant differences between stimulated and unstimulated nuclei, especially the posteroventral cochlear nucleus (PYCN), in individual cats, but the directions of the differences were inconsistent. Overall, there was no significant effect of electrical stimulation on soma size. These results indicate that chronic electrical stimulation of the auditory nerve has no positive or negative trophic effects on otherwise innervated, maturing cochlear nucleus neurons
    corecore